2013

CHEMISTRY

(Major)

Paper: 4.2

Full Marks: 60

Time: 21/2 hours

The figures in the margin indicate full marks for the questions

- Answer the following questions: $1 \times 7 = 7$

 - I2 is not soluble in water, but it is (a) soluble in KI solution. Give reasons.
 - What is the styx number of B4H10 (b) structure?
 - Other alkali metals form superoxide but (c) lithium does not form. Give reasons.
 - (d) Which ionic compound of aluminium is used as coagulant and precipitant in treating both drinking water and sewage?
 - Give one example of a stabilized alkali (e) metal anion.

- (f) Among the transition elements, which has the highest density?
- (g) Anhydrous CuSO₄ is colourless but aqueous solution of CuSO₄ is blue. Give reasons.
- 2. Answer the following questions:

 $2 \times 4 = 8$

(a) Describe the action of XeF_2 on (i) H_2O and (ii) H_2 .

Or

The gaseous XeF_6 molecule does not have a static structure. Explain this statement.

- (b) Give the structural representation of $Si_3O_9^{6-}$ and $Si_6O_{18}^{12-}$.
- (c) What is inert pair effect? Why inert pair effect is more prominent for the heaviest element in a group?
- (d) Name and draw structure of one hexadentate ligand.
- 3. (a) How is it possible to form interhalogen compounds? Explain the structure and bonding in CIF₃ and I₃. 1+4=5

(b) Give one method of preparation of borazine. In what respect it is similar to benzene? Explain using structural representation. Give one reaction which differentiate it from benzene.

2+2+1=5

Or

For S₄N₄, answer the following:

1+1+1+2=5

- (i) One method of preparation of it
- (ii) One reaction where the heterocyclic ring is retained
- (iii) One reaction where smaller ring is formed
- (iv) At least four resonance structures of the molecule
- (c) How can FeCl₃ be prepared? Why does aqueous solution of ferric chloride become acidic on long standing? Mention one use of ferric chloride each in inorganic analysis and organic preparation. 1+2+2=5

Or

How many oxides of vanadium are known? Give preparation, properties and uses of V_2O_5 . 2+3=5

4. (a) (i) Describe the method of extraction of nickel from its ore.

6

(ii) The hydration energy of group 2 metals are much greater than group 1 metals and among group 2 metals beryllium has the maximum. Give reasons to justify this statement. 2+2=4

Or

- (i) What is the principle of precipitation of Na⁺ and K⁺ ions from aqueous solution? Explain using appropriate reaction, the detection of K⁺ and Na⁺ ions from their solution in qualitative analysis.

 2+3=5
- (ii) Describe the method of extraction of gold from its ore. How is lead separated if present with gold? 4+1=5
- (b) (i) How can you explain the following properties of metals?

 Brightness, malleability, catalytic activity, semiconductor property and ability to form coordination compound

5

(ii) Although zinc has no incompletely filled up d orbitals, how is it possible for zinc to form complex compounds? Discuss the stereochemistry of coordination compounds of zinc. 2+3=5

Or

(i) Discuss the gradual trend of solubilities of hydroxides and sulphates of alkaline earth metals.

2+3=5

- (ii) How are alkali metals generally characterised? What are different oxides formed by alkali metals? Give a brief account of their stability. 2+1+2=5
- (c) (i) Give IUPAC names of the following: 2

 Na[PtCl₃(NH₃)], [Co(NH₃)₆][Cr(CN)₆]
 - (ii) How can the compound CoCl₃·4NH₃ be represented as told in Werner's theory? How many ions will it produce in aqueous solution? 2+1
 - (iii) Why are transition metals capable of showing variable oxidation state?

 Give a brief description of stable and unstable oxidation states of V,

 Cr, Mn and Fe. 1+4=5

in Almosti on and Or decodite in

- (i) Why tetrahedral complexes do not show geometrical isomerism? Give a description of geometrical isomerism in square planar complexes of the type Ma₂b₂ and M(ab)₂ with examples. 1+2+2=5
- (ii) What are π-acceptor ligands? Give examples. Write one method of preparation of Fe(CO)₅. Discuss its structure and bonding. Does it satisfy 18-electron rule? Show with calculation.

* * *