3 (Sem-6) PHY M 4

2016

PHYSICS (Major)

Paper: 6.4

(Statistical Mechanics and Computer Applications)

Full Marks : 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Statistical Mechanics)

Answer the following questions : 1×6=6 1.

- State the Liouville theorem. (a)
- Define Fermi energy. (b)
- (c) Which statistics is applicable for nuclei containing odd numbers of nucleons?
- What is the probability of finding an (d)electron with energy equal to the Fermi energy in a metal at any temperature?

A16/495

(Turn Over)

	(e)	what is the Boltzmann canonical principle about statistical equilibrium?
	(f)	For which type of particles the symmetric wave function is applicable?
Answer the following questions :		
	(a)	Derive most probable distribution in Maxwell-Boltzmann statistics. 3
	(b)	Compare between Bose-Einstein and Fermi-Dirac statistics. 3
	(C)	What is Bose-Einstein condensation? Write the condition of degeneration. 1+2
	(d)	Derive Boltzmann entropy relation. 3
	Ans	wer any two of the following : $6 \times 2 = 12$
	(a)	Derive Maxwell's distribution law using M-D statistics.
	(b)	What is Fermi distribution function? Apply F-D statistics to derive electronic specific heat.

(c) Deduce blackbody radiation formula using B-E statistics.

A16/495

2

3

(Continued)

4 14 MINT (C -mod) (2)

GROUP-B

(Computer Application)

4. Write down the FORTRAN-95 or C or C^{++} expression for the following : $2\times3=6$

(a)
$$Y = \frac{2x^2 + 3}{3x^2 + 4}$$

(b)
$$e^{x^2} + \frac{3x^3}{1+x^2}$$

(c)
$$Z = \frac{x \sin^{-1} x + 1}{x^3 + \cos^{-1} x}$$

5. Answer the following :

2×2=4

- (a) How can you write the input and output statements for an character constant A in either FORTRAN-95 or C or C⁺⁺?
- (b) How are the following mathematical functions expressed in FORTRAN-95 or C or C⁺⁺?

(i) Absolute value of $x^2 + 3y^2$

(ii) Logarithm (base 10) of x^3

A16/495

(Turn Over)

6. Answer either (a) or (b) :

- (a) Write down the flow chart and a program in either FORTRAN-95 or C or C⁺⁺ to generate AP series with common difference 2 and number of elements 10 and also find its sum.
- (b) Write down the flow chart and a program in either FORTRAN-95 or C or C^{++} to find the sum of N odd numbers.
- 7. Answer either (a) or (b) :
 - (a) Write a program in either FORTRAN-95 or C or C⁺⁺ to compute the real roots of the following quadratic equation :

 $ax^{2} + bx + c = 0$ for a = 5, b = -8 and c = 1

(b) Write a program in either FORTRAN-95 or C or C⁺⁺ to determine mean and standard deviation of given experimental data.

8. Answer either (a) or (b) :

(a) Write down different steps required to find the numerical solution of a firstorder differential equation with the aid of 4th order Runge-Kutta method.

A16/495

(Continued)

5

10

(5)

Write a program in either FORTRAN-95 or C or C⁺⁺ to solve the differential equation $\frac{dy}{dx} = 2x^3 + y^2$ in the interval [1, 1.5] having initial value y = 0.8 at x = 1 and step size h = 0.5 using Runge-Kutta 4th order method. What is the order of error in such method?

(b) Write down the step-by-step procedure to solve for numerical value of integral using Simpson's one-third rule. Write the flow chart and a program in either FORTRAN-95 or C or C⁺⁺ to compute the numerical value of the integral for N = 100

$$\int_0^2 \frac{dx}{2x^2 + 3x}$$

using Simpson's one-third rule.

3 (Sem-6) PHY M 4

A16-2000/495