(b) (i) Prove that the parametric equations
$$x=rac{a}{2}\left(t+rac{1}{t}
ight)$$
 and $y=rac{b}{2}\left(t-rac{1}{t}
ight)$ represent a hyperbola, where t is a parameter.
$$2$$
 প্রমাণ কৰা যে, $x=rac{a}{2}\left(t+rac{1}{t}
ight)$ আৰু $y=rac{b}{2}\left(t-rac{1}{t}
ight)$ প্রাচলিক সমীকৰণ দুটাই এটা

পৰাবৃত্ত বুজায়, য'ত t এটা প্ৰাচল।

- (ii) Find the equation of the hyperbola whose asymptotes are 2x y = 3 and 3x + y = 7 and which passes through the point (1, 1).

 (1, 1) বিন্দুৰে যোৱা পৰাবৃত্ত এটাৰ অনন্তম্পূৰ্শী বেখাদ্বয় 2x y = 3 আৰু 3x + y = 7 হ'লে পৰাবৃত্তটোৰ সমীকৰণ নিৰ্ণয় কৰা।
- (c) If $\phi(x, y, z) = xy^2z$ and $\overline{A} = xy\hat{i} xy^2\hat{j} + yz^2\hat{k}$, find $\frac{\partial^3}{\partial x^2 \partial z}(\phi \overline{A})$ at the point (2, -1, 1). 5 $\phi(x, y, z) = xy^2z$ আৰু $\overline{A} = xy\hat{i} xy^2\hat{j} + yz^2\hat{k}$ হ'লে, (2, -1, 1) বিন্দৃত $\frac{\partial^3}{\partial x^2 \partial z}(\phi \overline{A})$ ৰ মান উলিওৱা।

3