3 (Sem-3) MAT M 2

2012

MATHEMATICS

(Major)

Paper : 3.2

(Linear Algebra and Vector)

Full Marks : 80

Time : 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Linear Algebra)

(Marks: 40)

1. Answer the following :

- (a) Is the following statement true or false? If false, correct the statement : For linearly independent vectors v_1 , v_2 , v_3 in a vector space V the set $\{v_1, v_3\}$ is a linearly dependent set.
- (b) What is the basis of the vector space $V = \{0_{\nu}\}$?

A13-1500/96

(Turn Over)

1×6=6

- (c) State the condition under which a set of m vectors spans \mathbb{R}^n .
- (d) What are the eigenvalues of an upper triangular matrix?
 - (e) State Cayley-Hamilton theorem.
- (f) Let $T: V \to V$ be a linear operator. State one condition on T so that 0 is an eigenvalue of T.
- **2.** Answer the following :
 - (a) Consider the vector space $V = \mathbb{R}^3$ over \mathbb{R} . If U and W are the xy-plane and yz-plane respectively, then determine dim $(U \cap W)$.
 - (b) Find all eigenvalues of the operator

$$T:\mathbb{R}^2\to\mathbb{R}^2$$

defined by

$$T(x, y) = (3x + 3y, x + 5y)$$

- 3. Answer any one part :
 - (a) (i) Let V be the vector space of all functions from the real field ℝ into ℝ. Show that W is a subspace of V, where

$$W = \{ f : f(7) = f(1) \}$$

A13-1500/96

(Continued)

10

2×2=4

- (3)
- (ii) Let V be a finite dimensional vector space. Prove that every basis of V has the same number of vectors.
- (iii) Determine whether or not the following set S forms a basis of \mathbb{R}^3 :

 $S = \{(2, 4, -3), (0, 1, 1), (0, 1, -1)\}\$ 3+4+3=10

- (i) Prove that the intersection of a finite collection of subspaces of a vector space V(F) is a subspace of V(F). Is it true for the union of subspaces?
 - (ii) Let V(F) be a vector space of dimension *n*. Prove that any n+1vectors of *V* are linearly dependent. Further prove that if vectors v_1, v_2, \dots, v_n span *V*, then they are linearly independent.
 - (iii) Find a basis and dimension of the subspace U of \mathbb{R}^4 , where

$$U = \{(a, b, c, d) | a + b = 0, c = 2d\}$$

3+4+3=10

- 4. Answer any two parts :
 - (a) (i) Let V be the vector space of $n \times n$ square matrices over the field K and M be an arbitrary matrix in V. Show that the map $T: V \rightarrow V$ defined by T(A) = AM + MA, $\forall A \in V$ is linear.

A13-1500/96

(Turn Over)

5×2=10

(b)

(4)

- (ii) Let $T: \mathbb{R}^2 \to \mathbb{R}$ be the linear mapping for which T(1, 1) = 3 and T(0, 1) = -2. Then find T(x, y). 2+3=5
- (b) Verify the rank nullity theorem for the linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$T(x, y, z) = (x + y, y + z)$$
 5

- (c) Let U and V be vector spaces over a field K. If $\dim U = m$, $\dim V = n$, then prove that $\dim \operatorname{Hom}(U, V) = mn$, where $\operatorname{Hom}(U, V)$ denotes the vector space of all linear mappings from U into V.
- 5. Answer any one part :
 - (a) (i) Find the eigenvalues and the corresponding eigenvectors of the following matrix :

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}$$

Are the characteristic polynomial of A and the minimal polynomial of A same? 5+5=10

A13-1500/96

(Continued)

10

5

- (5)
- (b) (i) Show that the following system of linear equations are consistent. Hence solve them :

$$x+2y-z=3$$

$$3x-y+2z=1$$

$$2x-2y+3z=2$$

$$x-y+z=-1$$

- (ii) Prove that the minimal polynomial of a 'matrix A divides every polynomial which has A as a zero.
- (iii) Use Cayley-Hamilton theorem to find the inverse of the matrix.

 $\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$

5+3+2=10

te establishe i so stat

(Vector)

(Marks : 40)

6. Answer the following :

1×4=4

1

- (a) Write the geometrical interpretation of scalar triple product $\vec{a} \cdot (\vec{b} \times \vec{c})$.
- (b) Does associative law for cross products of vectors hold?

A13-1500/96

(Turn Over)

- (6)
- (c) Write the condition for a vector function \vec{f} of a scalar variable t to be of constant magnitude.
- (d) Find div \vec{r} , where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.
- 7. Answer the following :

- (a) A particle moves along the curve $x = 3t^2$, $y = t^2 2t$, $z = t^3$, where t is the time. Find the component of velocity at time t = 1 in the direction $\hat{i} + \hat{j} \hat{k}$.
- (b) Show that the vector

$$\vec{v} = yz\hat{i} + zx\hat{j} + xy\hat{k}$$

is irrotational.

(c) Evaluate

where S is a closed surface. (Symbols with usual meanings.)

- 8. Answer any one part :
 - (a) (i) Prove that

$$[\vec{b} \times \vec{c} \ \vec{c} \times \vec{a} \ \vec{a} \times \vec{b}] = [\vec{a} \ \vec{b} \ \vec{c}]^2$$

· . . .

A13-1500/96

(Continued)

10

(7)

(ii) Show that grad ϕ is a vector perpendicular to the surface $\phi(x, y, z) = c$, where c is a constant.

Further show that curl (grad ϕ) = $\vec{0}$.

(iii) Given

$$\vec{r}(t) = \hat{i} - 2\hat{j} + 2\hat{k} \text{ at } t = 2\hat{i}$$
$$= 2\hat{i} - \hat{j} + 4\hat{k} \text{ at } t = 3$$

then evaluate

$$\int_{2}^{3} \left(\vec{r} \cdot \frac{d\vec{r}}{dt} \right) dt \qquad 3+4+3=10$$

(b) (i) Prove that
$$[\vec{a} + \vec{b} \quad \vec{b} + \vec{c} \quad \vec{c} + \vec{a}] = 2[\vec{a} \quad \vec{b} \quad \vec{c}]$$

(ii) Find the angle between the surfaces

$$x^2 + y^2 + z^2 = 9$$
 and $z = x^2 + y^2 - 3$
at the point (2, -1, 2).

(iii) If
$$\vec{F} = 3xy\hat{i} - y^2\hat{j}$$
, then evaluate
$$\int_C \vec{F} \cdot d\vec{r}$$

where C is the curve $y = 2x^2$ in the xy-plane from (0, 0) to (1, 2).

3+4+3=10

A13-1500/96

(Turn Over)

9. Answer any two parts : 5×2=10 (a) (i) If

$$\frac{d\vec{r}}{dt} = \vec{w} \times \vec{r}$$

and

$$\frac{d\vec{s}}{dt} = \vec{w} \times \vec{s}$$

show that

$$\frac{d}{dt}(\vec{r}\times\vec{s})=\vec{w}\times(\vec{r}\times\vec{s})$$

(ü) If

$$\vec{A} = \cos xy\hat{i} + (3xy - 2x^2)\hat{j} + (3x + 2y)\hat{k}$$

then find

$$\frac{\partial^2 A}{\partial x \partial y} \qquad \qquad 3+2=5$$

(b) If \vec{a} is a constant vector and

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

show that—

$$\vec{u} \quad \operatorname{div}(\vec{a} \times \vec{r}) = 0$$

(ii) $\operatorname{curl}(\vec{a} \times \vec{r}) = 2\vec{a}$ 2+3=5

$$\nabla \times (\nabla \times \vec{F}) = \nabla (\nabla \cdot \vec{F}) - \nabla^2 \vec{F} \qquad 5$$

A13-1500/96

١

(Continued)

(9)

10. Answer any one part :

- (a) (i) Find the value of x so that the vectors $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} + 3\hat{k}$ and $3\hat{i} + x\hat{j} + 5\hat{k}$ are coplanar.
 - (ii) Let \vec{a} , \vec{b} , \vec{c} be three unit vectors such that

$$\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2}\vec{b}$$

If \vec{b} and \vec{c} are non-parallel vectors, then find the angles which \vec{a} makes with \vec{b} and \vec{c} .

(iii) If $\vec{F} = (2x^2 - 3z)\hat{i} - 2xy\hat{j} - 4x\hat{k}$, then evaluate

$$\int_V \operatorname{div} \vec{F} \cdot dV$$

where V is the closed region bounded by the planes x = 0, y = 0, z = 0 and 2x+2y+z=4. 2+3+5=10

(b) (i) Prove that

$$[\vec{a} \times \vec{b}] \times (\vec{c} \times \vec{d}) = [\vec{a} \vec{b} \vec{d}] \vec{c} - [\vec{a} \vec{b} \vec{c}] \vec{d}$$

 $= [\vec{a} \vec{c} \vec{d}] \vec{b} - [\vec{b} \vec{c} \vec{d}] \vec{a}$

Hence express any vector \vec{r} in terms of \vec{a} , \vec{b} , \vec{c} provided they are not coplanar.

A13—1500/96

(Turn Over)

(10)

(ii) Evaluate

where

$$\vec{F} = yz\hat{i} + zx\hat{j} + xy\hat{k}$$

and S is that part of the surface of the sphere $x^2 + y^2 + z^2 = 1$ which lies in the first octant. 5+5=10

٩,

A13-1500/96