Total No. of printed pages = 6

3 (Sem 2) MAT M2

2015 MATHEMATICS (Major) Theory Paper : 2.2 (Differential Equation) Full Marks – 80 Time – Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed : $1 \times 10 = 10$
 - (a) Give a definition of an orthogonal trajectory of a family of curves.
 - (b) What is an exact differential equation ?
 - (c) When a first order differential equation is said to be homogeneous ?
 - (d) Define a linear differential equation.

[Turn over

- (e) Write down the complementary function of the differential equation $(D^2 + 1)y = e^{2x}$.
- (f) Is the integrating factor of a differential equation Mdx + Ndy = 0 unique ?
- (g) What is the geometrical interpretation of a differential equation ?
- (h) The slope of a plane curve at a point is proportional to the product of the coordinates of that point. Express it by a differential equation.
- (i) Write the form of a total differential equation.
- (j) Write the particular integral of the differential equation $(D^2 3D + 2)y = e^x$.
- 2. Answer the following questions : $2 \times 5 = 10$

(a) Solve : $x^{2}(y-1)dx + y^{2}(x+1)dy = 0$

(b) Find the differential equation of

 $y = e^{x} (a \cos x + b \sin x)$ where a and b are constants.

(c) Solve : $\frac{dy}{dx} + \frac{\sin 2y}{x} = x^3 \cos^2 y$

30/3 (Sem 2) MAT M2 (2)

(d) Find the integrating factor of

$$\sec^2 y \frac{dy}{dx} + 2x \tan y = x^2$$

- (e) Construct the partial differential equation by eliminating a, b, c from z = a(x+y) + b(x-y) + abt + c.
- 3. Answer any five questions : $4 \times 5 = 20$

(a) Solve : $xdx + ydy + (1 + \frac{y^2}{x^2})(ydx - xdy) = 0$.

- (b) Find the orthogonal trajectories of the family of co-axial circles $x^2 + y^2 + 2gx + c = 0$ where g is the parameter.
- (c) Solve : $(1 + y^2)dx = (\tan^{-1}y x)dy$
- (d) Apply the method of variation of parameters to solve

$$\frac{d^2y}{dx^2} + 4y = 4\tan 2x$$

30/3 (Sem 2) MAT M2 (3)

[Turn over

(e) Solve : $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = 0$, given that $x + \frac{1}{x}$ is one of its solutions.

(f) Solve : $\frac{dx}{y} = \frac{dy}{x} = \frac{dz}{xyz^2(x^2 - y^2)}$ (g) Solve : $(D^3 + 1)y = \cos x$

4. Answer either (a) and (b) or (c) and (d) : 5+5=10

(a) Find the complete integral of $p^2x+q^2y = z$

- (b) Solve : $y = px + \sqrt{a^2p^2 + b^2}$
- (c) Solve by Charpit's method

 $z = px + qy + p^2 + q^2$

(d) Solve : $(D^2 - 2D + 1)y = x^2 e^{3x}$

5. Find the condition of exactness of a linear differential equation of order n. 6

Or

Find the necessary condition for integrability of the total differential equation Pdx + Qdy + Rdz = 0.

30/3 (Sem 2) MAT M2 (4)

2500(P)

- 6. Answer either (a) and (b) or (c) and (d) : 6+6=12
 - (a) Find f(y) such that f(y)dx zxdy xylogy
 = 0 is integrable. Hence solve it.
 - (b) Eliminate the arbitrary function φ from the equation φ (x + y + z, x² + y² + z²) = 0.
 What is the order of this differential equation ?

(c) Solve :
$$\frac{dx}{x(y^2 - z^2)} = \frac{dy}{y(z^2 - x^2)} = \frac{dz}{z(x^2 - y^2)}$$

(d) Verify that the condition of integrability is satisfied by the equation $(2x^2+2xy+2xz^2+1)dx + dy + 2zdz = 0$ and solve it.

7. Answer any two questions : 6×2=12

(a) Solve : $\frac{d^2y}{dx^2} - 2\tan x \frac{dy}{dx} + 3y = 2\sec x$

given that $y = \sin x$ is a part of its complementary function.

(b) Find the integral surface of the linear partial differential equation (x-y)p+(y-x-z)q = z through the circle z = 1, $x^2 + y^2 = 1$.

$$30/3$$
 (Sem 2) MAT M2 (5)

Turn over

(c) Reduce the differential equation (px-y)(x-py)
 = 2p to Clairaut's form by the substitution x² = u and y² = v and find its complete primitive and its singular solution, if any.

30/3 (Sem 2) MAT M2

(6)

2500(P)