3 (Sem-6) MAT M 5

2016

MATHEMATICS

(Major)

Paper : 6.5

(Graph and Combinatorics)

Full Marks : 60

Time : 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following questions : 1×7=7
 - (a) A bookshelf holds 6 different English books, 8 different French books and 10 different German books. In how many ways a book (of any one language) can be drawn from the bookshelf?
 - (b) Let X be a set and let A, B be any subsets of X. If $A \subset B$, then which of the following statements is false?

(i) $A \cap B' = \phi$ (ii) $A \cap B = A$ (iii) $A \cup B = B$ (iv) $A^c \subseteq B^c$

A16/487

(Turn Over)

- (c) There are 15 married couples in a party. Find the number of ways of choosing a woman and a man from the party such that the two are not married to each other.
- (d) Can we draw a graph of 7 vertices such that the degree of each vertex is 3? If not, why?
- (e) Draw the graph $\overline{K}_3 + \overline{K}_4$.
- (f) Define cut point of a graph G.
- (g) In a non-trivial tree with p vertices and q edges, p = ?
- **2.** Answer the following questions : 2×4=8
 - (a) If X is any set and A is any subset of it, then show that

|X - A| = |X| - |A|

- (b) Define enumerable set with suitable example.
- (c) Can a graph containing a cycle of length3 be a bipartite graph? Justify.
- (d) Find the number of points and number of lines in—
 - (*i*) $K_5 + K_1$;
 - (ii) K_{m,n}.

A16/487

(Continued)

۰.

3. Answer any three parts : 5×3=15

(a) Give a combinatorial proof of

$$C(n, r) = C(n-1, r) + C(n-1, r-1)$$

- (b) (i) Ten different paintings are to be allocated to n office rooms so that no room gets more than 1 painting. Find the number of ways of accomplishing this if n = 14.
 - (ii) There are n married couples at a party. Each people shakes hands with every person other than her or his spouse. Find the total number of handshakes.
- (c) Define intersection graph. Show that every graph is an intersection graph. 1+4
- (d) Define degree of a vertex of a graph. Let G be a (p, q) graph, all of whose vertices have degree K or K + 1. If G has $p_K > 0$ vertices of degree K and p_{K+1} vertices of degree K + 1, then prove that

$$p_K = (K+1)p - 2q$$
 1+4

(e) Show that every non-trivial tree has at least two end vertices (i.e., vertices with deg 1).

A16/487

(Turn Over)

5

5

- 4. (a) For prescribed non-negative integers $\lambda_1, \lambda_2, ..., \lambda_m$, find the number of solutions in integers of the equation $x_1 + x_2 + ... + x_m = n$ with $x_i \ge \lambda_i$ for each *i*.
 - (b) Find the number of ways of choosing r positive integers from among the first n positive integers such that no 2 consecutive integers appear in the choice and the choice does not include 1 and n.
- 5. (a) (i) For any graph G, show that

$$\kappa(G) \leq \lambda(G) \leq \delta(G)$$

where the symbols have their usual meaning.

. (ii) Draw a graph for which $\kappa = 2$, $\lambda = 3$ and $\delta = 4$.

v producto the Or and to all

- (b) (i) For all integers a, b, c such that $0 < a \le b \le c$, show that there exists a graph with $\kappa(G) = a$, $\lambda(G) = b$ and $\delta(G) = c$.
 - *(ii)* Define connectivity function of a graph *G*. Show that this function is strictly decreasing function.

A16/487

(Continued)

4

6

7

3

6

4

- 6. Prove the equivalence of the following statements : 10
 - (a) G is Eulerian
 - (b) Every vertex of G has even degree
 - (c) The set of edges of G can be partitioned into cycles

Or

- (a) If for all vertices v of a graph G(p, q), deg $v \ge p/2$, where $p \ge 3$, then show that G is Hamiltonian.
- (b) Give an example of a graph which is both Eulerian and Hamiltonian.
- (c) How many Hamiltonian cycles are there in K_4 ?

* * *

A16-2000/487

6

2

2