2017

CHEMISTRY

(Major)

Paper: 1.2

(Organic Chemistry)

Fuli Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer/Choose the correct option for the following (any seven): $1 \times 7 = 7$
 - (a) Write the IUPAC name of the following compound:

(b) Which of the following structures contributes more to its resonance hybrid?

8A/388

(Turn Over)

- (c) Why is the boiling point of ethyleneglycol much lower than that of glycerol?
- (d) Why is 1,3,5-cycloheptatrienyl cation aromatic but 1,3,5-cycloheptatriene is not?
- (e) Arrange the following carbocations in increasing order of their stability:

$$(CH_3)_3C^+$$
, $CH_2=CH-CH_2^+$

- (f) Between o-hydroxybenzoic acid and p-hydroxybenzoic acid, which is stronger acid and why?
- (g) Assign R- or S-configuration to each of the following compounds:

- (h) The number of optically active isomers of HOCH₂(CHOH)₄CHO is
 - (i) 4
 - (ii) 8
 - (iii) 16
 - (iv) 24

2. Answer the following questions (any four):

 $2 \times 4 = 8$

- (a) Explain that cyclopentadiene is acidic $(pK_a = 16)$.
- (b) The chair conformation of cyclohexane is more stable than the boat conformation. Explain.
- (c) Why does the addition of HCl to the following olefin take place in the opposite manner as predicted by Markonikov's rule?

$\mathrm{CH}_2 = \mathrm{CH} - \mathrm{CO}_2\mathrm{Et} + \mathrm{HCl} \rightarrow \mathrm{CH}_2\mathrm{Cl} - \mathrm{CH}_2 - \mathrm{CO}_2\mathrm{Et}$

- (d) Benzylchloride is more reactive than alkylchloride in nucleophilic substitution reaction. Why?
- (e) Account for the fact that naphthalene is less aromatic than benzene.
- 3. Answer the following questions (any three):

5×3=15

- (a) What are kinetic and thermodynamic products? Justify these by taking naphthalene as an example at different temperatures (80 °C and 160 °C). 2+3=5
- (b) What is stereocentre? Justify with an example that enantiomer has stereocentre. Draw all the possible geometrical isomers of 2,5-heptadiene.

1+2+2=5

- (c) What are different types of carbene?

 Distinguish between them. Give one method of formation of carbene. 1+2+2=5
- (d) What are electrophiles? Why does electrophilic substitution to naphthalene preferably take place at α-position rather than β-position? Write one alkylation of naphthalene with mechanism.
- (e) What is a meso-compound? How many different stereoisomers of tartaric acid are there? Give the R-, S-notations for the two chiral centres in meso-tartaric acid.

 1+2+2=5
- 4. Answer the following questions [either (a) or (b), (c) or (d) and (e) or (f)]:

10×3=30

(a) (i) What are aromatic compounds?

Classify the following molecules as aromatic, anti-aromatic or non-aromatic. Why is 1,3,5,7-cyclo-octatetraene not aromatic?

(ii) What is anchimeric assistance?

How does it affect the rate of a reaction? Write the mechanism for the following transformation and comment on the rate of the reaction:

1+2+2=5

 $Cl \xrightarrow{H_2O} OH$ Hexylchloride

$$\sim$$
 S \sim Cl \sim H₂O \sim S \sim OH 2-chloroethylethylsulphide

Or

- (b) (i) Why is maleic acid much stronger acid than fumaric acid even though they have same molecular formula, C₄O₄H₄? What kinds of stereomeric products are obtained when maleic and fumaric acids are treated with Br₂ in CCl₄ separately? Also mention the optical activity of the products. 2+3=5
 - (ii) Explain why elimination reactions always compete with substitution reaction. How can you convert butanol-1 to butene-1 by pyrolytic elimination? 3+2=5

(c) (i) What are carbocations? How can you generate carbocations? Arrange the following carbocations in decreasing order of stability and explain the reasons: 1+2+2=5

- (ii) Which one is more reactive towards nucleophiles—acetaldehyde or acetone? Explain.
- (iii) Addition of HCl to 1,3-butadiene gives both the 1,2- and 1,4-addition products. Using this example, explain kinetic and thermodynamic controls in reactions.

Or

(d) (i) Between pyridine and piperidine, which one is a stronger base and why?

(ii) Why does dibenzoyl methane not give addition compound with HCN even though there are two C = O groups? Explain.

2

2

3

2

- (iii) Explain with examples that addition of singlet carbene to alkene is stereospecific whereas with triplet carbene it is not stereospecific.
- (iv) Write all the possible chain isomers of the molecule having molecular formula, C₅H₁₂ and give their IUPAC nomenclature. Arrange these isomers in decreasing order of their boiling point. 1+1+1=3
- (e) (i) Acid-catalyzed dehydration of neopentyl alcohol yields 2-methyl-2-butene as the major product. Outline a mechanism showing all steps in its formation.
 - (ii) Why does alkyl fluoride give Hofmann elimination whereas alkyl iodide gives Saytzeff elimination?
 - (iii) Why is it difficult to resolve a racemic mixture?
 - (iv) Assign E- or Z-nomenclature for the following molecules: $\frac{1}{2}+\frac{1}{2}=1$

(Turn Over)

3

2

2

8A/388

(v) Convert the following molecule into sawhorse and Newman projections.Why is staggered form more stable than eclipsed form? 2+1=3

Or

(f) (i) How is benzyne intermediate generated? Give the mechanism for the following transformation:

$$\begin{array}{c}
\text{Cl} & \text{KNH}_2/\text{liq. NH}_3 \\
\end{array}$$

How can you trap benzyne intermediate? 1+2+1=4

- (ii) In the chair form of cyclohexylhalide, nucleophilic substitution by $S_N 2$ process for axial substituent of halide is faster than that of an equatorial substitutent of halide. Explain.
- (iii) Define enantiotopic and diastereotopic hydrogens and a prochirality centre. Illustrate your answer with suitable examples.

* * *

3

3